ИССЛЕДОВАНИЕ ДЕТЕРМИНИРОВАННОГО ХАОСА НА РЫНКЕ ДЕНЕГ Бейсенби М.А. 1 , Кисикова Н.М. 2 , Абдиханов А.А. 3

 1 Бейсенби Мамырбек Аукебаевич — доктор технических наук, профессор; 2 Кисикова Нургул Мырзабековна — кандидат физико-математических наук, доцент; 3 Абдиханов Адил Алмасович — магистрант,

кафедра системного анализа и управления, факультет информационных технологий, Евразийский национальный университет им. Л.Н. Гумилева, г. Астана, Республика Казахстан

Из экономической истории известны периоды колебаний и флуктуаций макроэкономических показателей, во время которых рыночные механизмы оказывались неустойчивыми [1, 2]. Неустойчивость рыночных механизмов можно попытаться объяснить несоответствием сложившихся рыночных механизмов макроэкономической политики [2]. Таким образом, возникает задача исследования влияния макроэкономической политики на устойчивость состояния равновесия рыночных механизмов. Неустойчивость рыночных механизмов объясняется проводимой государством денежно-кредитной, фискальной и инвестиционной политикой, а также другими факторами [1, 2].

Пусть макроэкономическая модель равновесия рыночных процессов описывается системой дифференциальных уравнений.

$$\frac{dv}{dt} = \frac{1}{T_1} \cdot \frac{\left(N_D(v) - N_S(v)\right)}{N_S(v)} v, \qquad (1)$$

$$\frac{dr}{dt} = \frac{1}{T_2} \cdot \frac{\left(I(r) - S(Y)\right)}{S(Y)} r, \qquad (2)$$

$$\frac{dp}{dt} = \frac{1}{T} \cdot \frac{\left(\theta Y + M_{2D}(r) - M_0\right)}{M_0} p, \qquad (3)$$

где Y(v,r,p)-валовой внутренний продукт (ВВП); S-сбережения; I-инвестиции; N $_D$ и N_S -соответственно спрос и предложение на рабочую силу; v-реальная заработная плата; r-норма банковского процента; p-показатель уровня цен; Θ -величина обратная количеству оборотов денежной единицы в год; M_{2D} -спекулятивный спрос денег на ликвидность; $M_0(v,r,p)$ -предложение денег на рынке; T_1,T_2 и T_3 -соответственно постоянные времени рынка труда, денег и товаров, т.е. параметры имеющие размерность 1/ время.

Уравнение (1) выражает зависимость реальной заработной платы от спроса и предложения рабочей силы на рынке труда; (2) - колебание нормы процента, определяемое соотношением спроса на инвестиции и предложения капитала со стороны населения, государства и иностранных инвесторов. В (3) зафиксирован закон изменения уровня цен. Если количество денег больше, чем требуется для нормального оборота, то цена товаров повышается, так как деньги «дешевеют».

Предполагая в (1) - (3) уровень реальной заработанной платы v и уровень цен на рынке товаров р фиксированные, получим нелинейное уравнение относительно величины кредитных ставок r:

$$\frac{dr}{dt} = \frac{\alpha}{T} r \left(1 - \frac{\gamma}{\alpha} r \right), \tag{4}$$

где α — характеризует истинную скорость роста кредитных ставок; $\frac{\alpha}{\gamma}$ — характеризует

асимптотические равновесный уровень кредитных ставок.

Логистическое уравнения (3) при $\Delta t = 1$ можно представит в виде одномерного отображения.

$$r_{n+1} = \left(1 + \frac{\alpha}{T}\right) r_n \left(1 - \frac{\gamma}{\alpha} r_n\right), (5)$$

Рассмотрим квадратичное отображение $\phi: R \to R$, где

$$\varphi(r,\alpha,\gamma,T) = \frac{T+\alpha}{T}r\left(1-\frac{\gamma}{\alpha}r\right) = \frac{T+\alpha}{T}\cdot\frac{\gamma}{\alpha}r\left(\frac{\alpha}{\gamma}-r\right), \ T>0, \ \alpha>0, \ \gamma>0.$$

Данное квадратичное отображение при $\frac{\gamma}{\alpha} \neq 1$ зависит от параметров α , γ , T. Нас будет интересовать поведение функций $\varphi(r,\alpha,\gamma,T)$ на отрезке $\left[0,\alpha/\gamma\right]$. Графики всех этих функций пересекают ось абсцисс в точках x=0, $x=\frac{\alpha}{\gamma}$. Глобальный максимум функций $y=\varphi(r,\alpha,\gamma,T)$

достигается в точке $r=\dfrac{\alpha}{2\gamma}:\max_{_{x\in R}}\,\,\varphi\big(r,\alpha,\gamma,T\big)=\dfrac{T+\alpha}{T}\cdot\dfrac{\alpha}{4\gamma}$. Будем исследовать неподвижные точки отображения $\varphi^k,k\geq 1$, где $\varphi^k=\varphi\big(\varphi^{k-1}\big),\varphi^0=I$ — тождественное отображения.

Сначала рассмотрим случай к=1. Из соотношения $r=\varphi(r,\alpha,\gamma,T)$ имеем $r\left(1-\frac{T+\alpha}{T}\cdot\frac{\gamma}{\alpha}\left(\frac{\alpha}{\gamma}-r\right)\right)=0$, откуда $r_1=0$, $r_2=\frac{\alpha}{T+\alpha}\cdot\frac{\alpha}{\gamma}$.

Таким образом точки r_1 , r_2 являются неподвижными точками оператора φ , а следовательно неподвижные точки оператора φ^k для всех $k \ge 1$. Кроме того из $\varphi\left(\frac{\alpha}{\gamma}\right) = 0$ и $\varphi(0)$ следует, что $\varphi\left(\frac{\alpha}{\gamma}\right) = 0$, $\forall k \ge 1$. Так как $\varphi(r,\alpha,\gamma,T) < 0$ при r < 0 и $r > \frac{\alpha}{\gamma}$. Поэтому при $r \ge \frac{\alpha}{\gamma}$ не может быть неподвижная точка оператора φ^k для всех $k \ge 1$.

Для случая r < 0. Из условий $\varphi'(r,\alpha,\gamma,T) = \frac{T+\alpha}{T} \left(1-\frac{2\gamma}{\alpha}r\right) > 0$ при всех $r < \frac{\alpha}{2\gamma}$ следует, что функция φ строго возрастает на интервале $\left(-\infty,\frac{\alpha}{2\gamma}\right)$, причем $r > \varphi(r,\alpha,\gamma,T)$ при любом r < 0. Поэтому $r > \varphi(r) > \varphi^k(r)$, $\forall k > 1$ и при любом r < 0, т.е. φ^k не имеет неподвижной точки при r < 0.

Функция φ на отрезке $\left[0,\frac{\alpha}{2\gamma}\right]$ возрастает от нуля до максимального значения $\frac{T+\alpha}{T}\cdot\frac{\alpha}{4\gamma}$ и на отрезке $\left[\frac{\alpha}{2\gamma},\frac{\alpha}{\gamma}\right]$ убывает от $\frac{T+\alpha}{T}\cdot\frac{\alpha}{4\gamma}$ до нуля.

Поэтому для исследования неподвижных точек функций $\varphi^k, k > 1$ важно узнать соотношения величины $\varphi(r_{\max}, \alpha, \gamma, T) = \frac{T + \alpha}{T} \cdot \frac{\alpha}{4 \gamma}$ и $r_{\max} = \frac{\alpha}{2 \gamma}$.

График функции у=х пересекает график функции $\varphi^k(r)$ только в точках $r_1 = 0$, $r_2 = \frac{\alpha}{T + \alpha} \cdot \frac{\alpha}{\gamma}$.

Исследуем наличие неподвижной точки функции $\varphi^2(r) = \varphi(\varphi(r))$.

Новыми неподвижными точками функции $\varphi^2(r) = \varphi(\varphi(r))$ являются корни квадратного уравнения $r^2 + ar + b = 0$,

$$r_{3,4} = \frac{\alpha}{2\gamma} \cdot \frac{2T + \alpha}{T + \alpha} \cdot \left(1 \mp \sqrt{\frac{\alpha - 2T}{\alpha + 2T}}\right).$$

Заметим, что при $\, \alpha = 2T \,$ три неподвижные точки совпадают $\, r_2 = r_3 = r_4 = \frac{\alpha}{T+\alpha} . \frac{\alpha}{\gamma} \, .$

При $\alpha \ge 3T$ функция $\varphi^k(r)$, k > 1 имеют 2^k неподвижных точек.

Если для одномерного ограниченного отображения во всей области значений х выполнено неравенство $|d\phi/dr|>1$, то такое отображение обладает свойством неустойчивости: близкие точки под действием преобразования ϕ расходятся экспоненциально быстро, оставаясь в пределах конечного интервала. Следовательно, динамика такого отображения во многом аналогична динамике системы со странным аттрактором [2,3].

При $\alpha \cong 2T$ произошло удвоение цикла – из цикла первого порядка возник цикл второго порядка, причем свойство притяжения перешло к этому новому циклу, такие значения параметра α - называется точками бифуркации.

Что происходит при дальнейшем росте параметра α ? Здесь необходимо рассматривать уже три функции $\varphi(r)$, $\varphi^2(r)$ и $\varphi^4(r)$. Последняя из этих функций является (по х) многочленом 8-й степени. Ее неподвижными точками до значения параметра $\alpha \leq \sqrt{6}T$ являются только четыре неподвижные точки функции $\varphi^2(r)$. При $\alpha = \sqrt{6}T$, производные функции $\varphi^2(r)$ в точках r_1, r_2, r_3 и r_4 становятся равными -1 и при дальнейшем росте α вблизи каждой из них возникают пары неподвижных точек функции $\varphi^4(r)$. Для функции $\varphi^2(r)$ эти точки образуют два устойчивых цикла второго порядка, а для функции $\varphi(r)$ - устойчивый цикл четвертого порядка. При $\alpha > (2,54...)T$ этот цикл становится неустойчивым.

При $\alpha < \alpha_{\infty}$ отображение имеет единственный устойчивый цикл периода 2^{n} , который, кроме множества меры нуль, притягивает все точки из отрезка $\left[0, \frac{\alpha}{\gamma}\right]$.

Последовательность значений α_n , при которых наблюдаются бифуркации удвоения периода, удовлетворяет простому закону

$$\lim_{n \to \infty} [(\alpha_n - \alpha_{n-1})/(\alpha_{n+1} - \alpha_n)] = \delta = 4,6692...$$

Число δ является универсальной постоянной Фейгенбаума. Оно показывает, что последовательность бифуркаций удвоения является универсальной.

Из вышепроведенного анализа модели развития кредитных ставок следует, что кредитные ставки и экономическая система в целом развиваются без колебании до тех пор, пока выполняется условие $\alpha \leq 2T$. При определенных соотношениях между значениями скорости роста основных фондов α : $\alpha_1 < \alpha_2 < ... < \alpha_n < ...$, и постоянной времени Т интервал ($2T < \alpha < \alpha_\infty = T^*2,5699...$) соответствует бесконечной последовательности бифуркаций, каждое из которых приводит к циклам более высокого порядка с периодом, удваивающимся при каждой последовательной бифуркации. Значения α_n скапливаются возле некоторого особого значения α_∞ , после чего получаются орбиты с «бесконечным периодом», т.е. с ярко выраженным хаотическим поведением. В конечном счете, все пространство $T+\alpha$ α

состояний динамической системы определяемые площадью четырехугольника шириной $\frac{T+\alpha}{4T}\cdot\frac{\alpha}{\gamma}$ и

длиной $\frac{\alpha}{\gamma}$ оказывается принадлежащим единственному хаотическому аттрактору, характеризуемому

неустойчивостью и чувствительностью к начальным условиям. В итоге это и объясняет происходящие в экономической системе краткосрочные колебания и флуктуации.

Список литературы

- 1. *Макконелл Кэмпбелл Р., Брю Стэнли Л.* Экономикс: Принципы, проблемы и политика. В 2 томах: Пер. с англ. Т. 1, 2. Таллин, 1993. 400 с.
- 2. Мэнкью Грегори Н. Принципы экономикс. СПб: Питер, 2002. 496 с.
- 3. *Николис Г. Пригожин И.* Познание сложного. М. Мир, 1990. 342 с.
- 4. Постон Т. Стюарт И. Теория катастроф и ее приложения. М.: Мир, 1980. 607 с.

- 5. *Гилмор Р*. Прикладная теория катастроф. В 2 томах. Т. 1. М.: Мир, 1984. 301 с.
- 6. Lorenz H.V. Nonlinear Dynamical Equation and Chaotic economy. Springer. Berlin, 1993. P. 234-247.
- 7. Бейсенби М.А. Модели и методы системного анализа и управление детерминированным хаосом в экономике. Астана, 2011. 201 с.
- 8. Рассел Д. Теория хаоса. М.: Изд. «VSD», 2012. 110 с.