• Телефон: +7(910)690-15-09
  • Email:
Russian Chinese (Simplified) English German

academicjournal Журнал «ACADEMY» выходит ежемесячно, 10 числа (ежемесячно уточняется). Следующий номер журнала № 07(46), июль 2019 г. Выйдет - 10.07.2019 г. Статьи принимаются до 05.07.2019 г.

Если Вы хотите напечататься в ближайшем номере, не откладывайте отправку заявки.
Потратьте одну минуту, заполните и отправьте заявку в Редакцию.




Рахимов Н.Н., Хакназарова Х.К., КoзаковаФ.Н.

Рахимов Насриддин Номозович - преподаватель высшей категории математических наук, заведующий кафедрой,

кафедра математики и информатики,

 академический лицей;

Хакназарова Хуршида Кенджаевна - учитель высшей категории,

 академический лицей

 Самаркандский государственный иностранный институт,

г. Самарканд;

Феруза Норовна Кoзакова - учитель начальных классов,

 школа № 12,

 с. Кулба, Форишский район, Джизакская область,

Республика Узбекистан

Аннотация: многие математические задачи допускают несколько вариантов решения. Часто первый избранный бывает далеко не самым удачным. Нахождение «наиболее простых», оригинальных путей решения нередко является результатом длительной и кропотливой работы. Умение решать задачу различными способами является одним из признаков хорошей математической подготовки.

В статье указано, как с помощью теоремы Пифагора решены некоторые алгебраические задачи. В каждом этюде приведены геометрические приемы решения задач.

Ключевые слова: теорема Пифагора, прямоугольный треугольник, функция, уравнение, неравенство, система уравнение и тригонометрия.

Список литературы

  1. Абдухамидов А.У., Насимов Х.А. и др. Алгебра и основы математического анализа. Учебник академического лицея. Ташкент. Издательство «Учитель», 2012.
  2. Исраилов И., Пашаев З. Геометрия. 1 часть. Учебник академического лицея. Ташкент, Издательство «Учитель», 2004.
  3. Яковлев Г.Н., Купцов Л.П. и др. Всероссийские математические олимпиады школьников. Москва. Издательство «Просвещение», 1992.

Ссылка для цитирования данной статьи 

academicjournal copyright    

Рахимов Н.Н., Хакназарова Х.К., КoзаковаФ.Н. РЕШЕНИЕ НЕКОТОРЫХ АЛГЕБРАИЧЕСКИХ ЗАДАЧ С ПОМОЩЬЮ ТЕОРЕМЫ ПИФАГОРА // Academy. № 2(29), 2018 - С.{см. журнал}.

academicjournal pdf2

Сухарев И.Г.

Сухарев Илья Георгиевич – кандидат технических наук, заместитель директора, ООО Эспиро, г. Москва

Аннотация: в статье рассмотрены подходы к анализу матрицы событий человека. Один из подходов применен к анализу группы событий, связанных с ядерными испытаниями. Обнаружено явление сверхрезонанса, порождаемое группой событий.

Ключевые слова: физика времени, матрица событий, сверхрезонанс, Кыштымская авария, Three Mile Island accident.

Список литературы

  1. Сухарев И.Г. Время // Academy. № 10 (25), 2017. С. 5-16.
  2. Сухарев И.Г. Кризисы // Academy. № 12 (27), 2017. С. 5-12.
  3. СРОКИ БЕРЕМЕННОСТИ. [Electronic resource] Режим доступа: http://www.magichild.ru/St/srok_beremennosti.htm/ (date of access: 31.01.2018).
  4. Nuclear weapons testing. [Electronic resource] Режим доступа: https://en.wikipedia.org/wiki/Nuclear_weapons_testing/ (date of access: 31.01.2018).
  5. Kyshtym disaster. [Electronic resource]. Режим доступа: https://en.wikipedia.org/wiki/Kyshtym_disaster/ (date of access: 31.01.2018).
  6. Three Mile Island accident. [Electronic resource]. Режим доступа: https://en.wikipedia.org/wiki/Three_Mile_Island_accident/ (date of access: 31.01.2018).

Ссылка для цитирования данной статьи 

academicjournal copyright    

Сухарев И.Г. МАТРИЦА СОБЫТИЙ // Academy. № 2(29), 2018 - С.{см. журнал}.

academicjournal pdf2

Кайдасов Ж. 

Кайдасов Жеткербай - кандидат физико-математических наук, профессор, кафедра математики, Актюбинский региональный государственный университет им. К. Жубанова, г. Актобе, Республика Казахстан

Аннотация: в статье рассматриваются поверхности отрицательной гауссовой кривизны в трехмерном евклидовом пространстве Е3, которые по внешнему виду очень похожи на катушкообразные. Преобразованием параметрических уравнений внутренней поверхности тора определены аналитические описания некоторых видов тороподобных поверхностей и установлены их геометрические формы с использованием компьютерной графики. Вычислением полной кривизны для каждого типа установлено, что они имеют отрицательную гауссовую кривизну.

Ключевые слова: поверхности вращения, поверхность тора, отрицательная кривизна, катушкообразные поверхности.

Список литературы

  1. Попов А.Г. Псевдосферические поверхности и некоторы задачи математической физики // Фундаментальная и прикладная математика. Т. 11, № 1. С. 227-239.
  2. Кайдасов Ж. О трех видах катушкообразных поверхностей // Достижения науки и образования, № 1 (23). С. 6-8.
  3. Путенихин П.В. Тороподобные поверхности // Квант. Маг. 10. 1101, 2013.

Ссылка для цитирования данной статьи 

academicjournal copyright    

Кайдасов Ж. СПОСОБЫ ПОСТРОЕНИЯ НЕКОТОРЫХ ВИДОВ ТОРОПОДОБНЫХ ПОВЕРХНОСТЕЙ // Academy. № 2(29), 2018 - С.{см. журнал}.

academicjournal pdf2

 

Сухарев И.Г.

Сухарев Илья Георгиевич – кандидат технических наук, заместиель директора, ООО «Эспиро», г. Москва 

Аннотация: в статье рассмотрены аспекты образования орбитальных каналов и локальных гравитационных фокусировок, управляющих движением планет и спутников. Уточнена моделирующая функция орбитальных каналов солнечной системы. Рассмотрен сценарий образования пояса астероидов из тела разрушенной планеты вследствие деградации удерживавших ее гравитационной фокусировки и орбитального канала.

Ключевые слова: орбитальный канал, локальная гравитационная фокусировка, пояс астероидов, люки Кирквуда, пояс Койпера.

Список литературы

  1. Сухарев И.Г. Третий закон Кеплера // Academy. № 6 (21), 2017. С. 6-10.
  2. Сухарев И.Г. Солнечная система // Academy. № 7 (22), 2017. С. 6-15.
  3. Wikipedia. Orbital resonance. [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Orbital_resonance/ (дата обращения: 04.01.2018).
  4. Kirkwood gap. [Электронный ресурс]. Режим доступа: https://en.wikipedia.org/wiki/Kirkwood_gap/ (дата обращения: 04.01.2018).
  5. Сухарев И.Г. Гравитация // Academy. № 8 (23), 2017. С. 5-9.
  6. Сухарев И.Г. Вселенная // Academy. № 9 (24), 2017. С. 5-9.

Ссылка для цитирования данной статьи 

academicjournal copyright    

Сухарев И.Г. ОРБИТАЛЬНЫЕ КАНАЛЫ // Academy. № 1(28), 2018 - С.{см. журнал}.

academicjournal pdf2

           
adware software removal